PII: S0040-4039(96)01715-7

Stereoselective Total Synthesis of (±)-Antheridic Acid

Masanao Shimano, a,1 Hiroto Nagaokab and Yasuji Yamada*, a

^aSchool of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03 ^bMeiji College of Pharmacy, 1-22-1 Yato-cho, Tanashi, Tokyo 188, Japan

Abstract: A method for the total synthesis of (±)-antheridic acid was established. Copyright © 1996 Elsevier Science Ltd

Antheridic acid (antheridiogen An, 1), possibly biogenetically derived from gibberellins, is structurally very congested, rigid and unique diterpenoid.² Functional groups are intricately situated among eight asymmetric centers. The unique structure of this compound and its interesting biological activity make its synthesis a challenging objective.^{3,4} A stereoselective route from hydrofluorene derivative 4⁵ to tetracyclic compound 2 possessing an antheridic acid framework was previously reported.⁶ Attempts to make dimethoxymethyl ether 2 into a more advanced intermediate for total synthesis were not successful⁷ and consequently a new route to achieve this purpose was sought. This communication describes a new route through methylacetal 3 for the highly stereocontrolled total synthesis of (±)-antheridic acid (1).

Starting material 45 was converted by hydrogenolysis followed by Birch reduction to carboxylic acid 5 having an A/B cis juncture, crucial for intermolecular Diels-Alder reaction in a later stage (Scheme I). Thioketalization and concomitant lactonization followed by the ordinary three step transformations gave thioketal 6, whose selective oxidation by mCPBA gave sulfoxide 7. The Diels-Alder reaction between 2-chloroacrylonitrile and the diene, formed by the thermolysis of sulfoxide 7, was carried out diastereoselectively in one pot to afford adduct 8 in good yield.⁸ The adduct 8 was then converted to intermediate 10 using the efficient seven step sequence, as previously reported.⁶

Reagents: a) i) aq. HClO₄, H₂, 10% Pd-C; ii) NaOH, EtOH then Na-NH₃, -34°C; b) i) MeSH, ρ -TsOH (cat.); ii) Me₃SiCH₂CH₂OCH₂Cl (SEMCl), i-Pr₂NEt; iii) DlBAL, -78°C; iv) MeOH, (MeO)₃CH, ρ -TsOH (cat.),69% in 6 steps; c) i-MCPBÂ, -78°C; d) Et₃N, 130°C then CH₂C(CN)Cl, 110°C, 76% from 6; e) i) DlBAL, -78°C; ii) NaBH₄, -5°C; iii) Ac₂O, Py; iv) Li-NH₃, -34°C; f) i) Ac₂O, Py; iii) c.HCl-MeOH, 8°C; iii) Li-NH₃, -34°C, 72% in 7 steps.

Functionalization of the A ring was then carried out starting from alcohol 10 as shown in Scheme II. The usual dehydration sequence (methanesulfonation followed by DBU treatment) on β -alcohol 10 gave an inseparable mixture of $\Delta^{1,10}$ -olefin 3 and $\Delta^{1,2}$ -olefin 12, in a 29:71 ratio. Unfortunately, the major isomer 12 could not be transformed to a more advanced intermediate and then an alternative route for obtaining $\Delta^{1,10}$ -olefin 3 in acceptable yield was investigated. By PCC oxidation followed by stereoselective reduction with Super-Hydride[®], the β -alcohol 10 was converted to α -alcohol 11, which was dehydrated as above to give the $\Delta^{1,10}$ -olefin 3 exclusively in excellent yield. The methylacetal moiety in 3 was transformed to the corresponding hydroxycarboxylic acid in two steps and the resulting product was lactonized by iodolactonization-dehydroiodination to give 13. The introduction of an α -hydroxy group at the C-3 position was achieved regio- and stereoselectively by the following three simple steps: α 1) lactone 13 was converted to tetraenic acid 14 by the treatment with LDA in THF, 2) iodolactonization of 14 with iodine-NaOH-Na₂CO₃

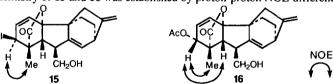
Reagents: a) i) PCC; ii) Super-Hydride[®]; b) i) MsCl, DMAP; ii) DBU, 110°C, 86% from **10**; c) i) 1NHCl-THF; ii) NaClO₂-NaH₂PO₄; iii) I_2 , NaHCO₃ aq.; iv) DBU, 68°C,67% in **4** steps; d) LDA, -78°C, 100%; e) I_2 , Na₂CO₃-NaOH aq.; f) AcONa, HMPA, 75°C, 92% in 2 steps.

aq. afforded 15^{11} as the sole product, 12 and 3) S_N2 substitution reaction of iodolactone 15 with NaOAc in HMPA afforded acetate $16.^{13,14}$

The final stage of the synthesis of (\pm)-antheridic acid (1) was shown in Scheme III. The primary alcohol in 16 was oxidized to the carboxylic acid and the acetate was hydrolyzed to give hydroxy acid 17. $\Delta^{1,2}$ -Double bond in 17 was selectively saturated by the procedure described previously, ¹⁵ to give (\pm)-methyl 15-deoxyantheridate (19) via dicarboxylic acid 18. Finally, allylic oxidation of 19 with SeO₂ followed by hydrolysis of the methyl ester according to Mander's procedure^{4a} completed the total synthesis of (\pm)-antheridic acid (1). The spectral properties were identical with those in the literature.^{4a}

Reagents: a) i) PDC; ii) NaClO₂-NaH₂PO₄; iii) K_2CO_3 , MeOH; b) LDA, Li, NH₃, -78°C; c) i) I_2 , NaHCO₃ aq.; ii) CH₂N₂, 65% from 16; iii) ρ -Bu₃SnH; d) i) SeO₂, t-BuOOH; ii) LiOH, MeOH aq.,73% in 3 steps.

The present study demonstrated a highly stereoselective synthesis of the antheridium inducing factor, (±)-antheridic acid.


References and Notes

- 1. Current address: Department of Chemistry, Central Research Laboratories, Kaken Pharm. Co., Ltd. 14, Shinomiya Minami-kawara-cho Yamashina-ku Kyoto, 607, Japan
- a) Nakanishi, K.; Endo, M.; Näf, U.; Johnson, L. F. J. Am. Chem. Soc., 1971, 93, 5579-5581. b)
 Endo, M.; Nakanishi, K.; Näf, U.; Mckeon, W.; Walker, R. Physiol. Plant, 1972, 26, 183-185. c)
 Zanno, P. R.; Endo, M.; Nakanishi, K.; Näf, U.; Stein, C. Naturwissenschaften, 1972, 59, 512. d)
 Näf, U.; Nakanishi, K.; Endo, M. Bot. Rev., 1975, 41, 315-359. e) Yamane, H.; Nohara, K.;
 Takahashi, N.; Schraudolf, H. Plant Cell Physiol., 1987, 28, 1203-1207.
- 3. Total synthesis of (±)-antheridic acid: a) Corey, E. J.; Myers, A. G. J. Am. Chem. Soc., 1985, 107, 5574-5576. b) Corey, E. J.; Myers, A. G.; Takahashi, N.; Yamane, H.; Schraudolf, H. Tetrahedron Lett., 1986, 27, 5083-5084.
- Transformation of gibberellin A₇ into antheridic acid: a) Furber, M.; Mander, L. N. J. Am. Chem. Soc., 1987, 109, 6389-6396. b) Furber, M.; Mander, L. N. Tetrahedron Lett., 1988, 29, 3339-3342.
 c) Furber, M.; Mander, L. N.; Patrick, G. L. J. Org. Chem., 1990, 55, 4860-4870.
- 5. Nagaoka, H.; Shimano, M.; Yamada, Y. Tetrahedron Lett., 1989, 30, 971-974.
- 6. Shimano, M.; Nagaoka, H.; Yamada, Y. Tetrahedron Lett., 1995, 36, 8227-8230.
- 7. Owing to acid-labile of the three double bonds in intermediate 2, the two methoxymethyl ether protecting groups could not be cleaved.

- 8. ΔE of two different transition states (dienophile approaching from β side to give the desired product and from α side to give undesired product) was about 2.9 kcal/mol calculated by the MacroModel Version 4.0.
- 9. It is of interest to note that LiAlH₄ reduction of ketone afforded α-alcohol 11 predominantly but that NaBH₄ reduction gave β-alcohol 10 as the major product.
- 10. Allylic oxidation at the C-3 position in 13 using a conventional reagent such as SeO₂, MnO₂, O₂-hv-sensitizer, and CrO₃-methylpyrazole was unsucceeded.
- 11. Compound 15: 1 H-NMR (400 MHz, CDCl₃) δ : 1.43 (1H, brd, J = 9.2 Hz), 1.51 (3H, s), 1.53~1.79 (4H, m), 1.83 (1H, dq, J = 15.6, 2.8 Hz), 2.31 (1H, brd, J = 15.5 Hz), 2.83 (1H, dq, J = 9.9, 3.3 Hz), 3.04 (1H, d, J = 9.9 Hz), 3.13 (1H, dt, J = 6.5, 2.6 Hz), 3.71 (1H, ddd, J = 11.8, 9.2, 3.9 Hz), 3.96 (1H, brd, J = 11.4 Hz), 4.63 (1H, q, J = 1.8 Hz), 4.85 (1H, brd, J = 1.3 Hz), 5.01 (1H, d, J = 3.9 Hz), 6.12 (1H, d, J = 9.4 Hz), 6.17 (1H, dd, J = 6.4, 2.6 Hz), 6.26 (1H, dd, J = 9.3, 3.9 Hz).; IR (KBr): 3416, 2944, 1780, 1649 cm⁻¹.; HRMS (EI) m/z: 424.0529 (M⁺); Calcd for $C_{19}H_{21}O_{3}I$; 424.0535.
- 12. Treatment of 14 with iodine-NaHCO₃ aq. gave a mixture of 15 and 20.16 in 82:18 ratio.

ZD

- 13. Compound 16: 1 H-NMR (400 MHz, CDCl₃) δ : 1.34 (3H, s), 1.39 (1H, dd, J = 9.9, 3.1 Hz), 1.54 (1H, m), 1.64 (1H, m), 1.70~1.83 (3H, m), 2.14 (3H, s), 2.34 (1H, brd, J = 15.3 Hz), 2.77 (1H, dq, J = 9.8, 2.9 Hz), 2.85 (1H, d, J = 9.8 Hz), 3.14 (1H, dt, J = 6.5, 2.6 Hz), 3.66 (1H, ddd, J = 11.7, 10.0, 3.4 Hz), 3.93 (1H, dt, J = 11.6, 3.0 Hz), 4.63 (1H, brd, J = 1.3 Hz), 4.85 (1H, brd, J = 1.2 Hz), 5.57 (1H, t, J = 2.2 Hz), 5.81 (1H, dd, J = 9.5, 2.6 Hz), 6.15 (1H, dd, J = 6.5, 2.5 Hz), 6.45 (1H, dd, J = 9.5, 1.8 Hz).; IR (KBr): 3424, 2927, 1777, 1729, 1650 cm⁻¹.; HRMS (EI) m/z: 328.1322 (M⁺); Calcd for $C_{19}H_{20}O_{5}$; 328.1310.
- 14. The stereochemistry of 15 and 16 was established by proton-proton NOE-difference spectroscopy.

- 15. Shimano, M.; Nagaoka, H.; Yamada, Y. Chem. Pharm. Bull., 1990, 38, 276-278.
- 16. Compound 20: ¹H-NMR (400 MHz, CDCl₃) δ : 1.39 (3H, s), 1.37~1.58 (2H, m), 1.76 (1H, m), 1.81~1.89 (2H, m), 2.16 (1H, ddd, J = 12.5, 10.2, 5.2 Hz), 2.53 (1H, brd, J = 14.7 Hz), 2.66 (1H, dq, J = 9.4, 2.9 Hz), 2.76 (1H, d, J = 9.5 Hz), 3.15 (1H, dt, J = 6.5, 2.8 Hz), 3.63 (1H, m), 3.92 (1H, brd, J = 11.3 Hz), 4.66 (1H, q, J = 1.4 Hz), 4.87 (1H, brd, J = 1.3 Hz), 5.10 (1H, dd, J = 2.8, 1.9 Hz), 5.62 (1H, dd, J = 9.2, 1.8 Hz), 6.05 (1H, dd, J = 9.2, 2.9 Hz), 6.12 (1H, dd, J = 6.5, 2.6 Hz).; IR (KBr): 3400, 2937, 1779, 1651 cm⁻¹.